
C++C++C++

C++

MemoryMemoryMemory

Memory

ManagementManagementManagement

Management

Innovation:Innovation:Innovation:

Innovation:

GCGCGC

GC

AllocatorAllocatorAllocator

Allocator

xushiweizh@gmail.com

2008-4-21

Introduction.. 2

What is GCAllocator?..2

Concept of GCAllocator..2

A Better Smart Pointer..3

Creating a GCAllocator and AllocatingMemory Should Be Very Fast..5

AnotherWay of GC.. 5

GCAllocator Implementations: ScopeAlloc and AutoFreeAlloc..7

Faster ThanAllAllocatorsYou Ever Seen..7

The Infrastructure of ScopeAlloc and AutoFreeAlloc... 9

GCAlloc: A Huge Stack..10

No Multithreaded Locks...10

When to useAutoFreeAlloc... 11

Open Source..11

Applications based on GCAllocator.. 11

A Word File Writer..11

Rope based on GCAllocator.. 12

STL Containers based on GCAllocator... 12

Related Topics...12

IntroductionIntroductionIntroduction

Introduction

Most of the C++ programmers do not benefit from "Garbage Collection" technique (GC). They are sick of deleting objects but
have to do this. There are some C/C++ memory GC implementations, but they are complex and are not widely used.

I am going to introduce a new memory management technique named "GC Allocator". "GC Allocator" isn't an implementation,
but a concept. Now, we have two "GCAllocator" implementations, named "AutoFreeAlloc" and "ScopeAlloc".

This article consists of three parts:

1. What is GCAllocator?
2. GCAllocator implementations: ScopeAlloc andAutoFreeAlloc
3. Applications based on GCAllocator

WhatWhatWhat

What

isisis

is

GCGCGC

GC

Allocator?Allocator?Allocator?

Allocator?

1. It is an Allocator for allocating memory.
2. A better Smart Pointer.
3. Creating a GCAllocator and allocating memory should be very fast.
4. Another way of GC.

ConceptConceptConcept

Concept

ofofof

of

GCGCGC

GC

AllocatorAllocatorAllocator

Allocator

GCAllocator is only a concept. The following is minimum specification for GCAllocator:

typedef void (*DestructorType)(void* data);

concept GCAllocator
{

// Allocate memory without given a cleanup function
void* allocate(size_t cb);

// Allocate memory with a cleanup function
void* allocate(size_t cb, DestructorType fn);

// Cleanup and deallocate all allocated memory by this GC Allocator
void clear();

// Swap two GCAllocator instances
void swap(GCAllocator& o);

};

When you creating a GCAllocator, You can use STD_NEW, STD_NEW_ARRAY to new objects. Let's see a very simple example:

GCAllocator alloc(initArgs); // initArgs depends on implementation

int* intObj = STD_NEW(alloc, int);
int* intObjWithArg = STD_NEW(alloc, int)(10);
int* intArray = STD_NEW_ARRAY(alloc, int, count);

MyObj* obj = STD_NEW(alloc, MyObj);
MyObj* objWithArg = STD_NEW(alloc, MyObj)(100);

http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://xushiwei.com/gc-allocator
http://xushiwei.com/gc-allocator
http://xushiwei.com/gc-allocator
http://www.ddj.com/cpp/184403759
http://en.wikipedia.org/wiki/Smart_pointer
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29

MyObj* objArray = STD_NEW_ARRAY(alloc, MyObj, count);

Frankly speaking, I don't like STD_NEW and STD_NEW_ARRAY. I hope I can use the following syntax:

GCAllocator alloc(initArgs);

int* intObj = new(alloc) int;
int* intObjWithArg = new(alloc) int(10);
int* intArray = new(alloc) int[count];

MyObj* obj = new(alloc) MyObj;
MyObj* objWithArg = new(alloc) MyObj(100);
MyObj* objArray = new(alloc) MyObj[count];

AAA

A

BetterBetterBetter

Better

SmartSmartSmart

Smart

PointerPointerPointer

Pointer

C++ programmers are sick of deleting objects. So they invent a technique named "Smart Pointer". There are many
implementations of Smart Pointer. The simplest one is std::auto_ptr. Here is an example:

{
std::auto_ptr<MyObj> obj(new MyObj);
std::auto_ptr<AnotherObj> obj2(new AnotherObj);
... // use obj and obj2 to do something.

}

If you don't use Smart Pointer, you have to write the following code:

{
MyObj* obj = new MyObj;
AnotherObj* obj2;
try
{

obj2 = new AnotherObj;
}
catch(...}
{

delete obj;
throw;

}
try
{

... // use obj and obj2 to do something.
}
catch(...)
{

delete obj2;
delete obj;
throw;

}
delete obj2;
delete obj;

}

http://en.wikipedia.org/wiki/Smart_pointer

When you use a GCAllocator, you can do the same things as the following:

{
GCAllocator alloc(initArgs); // initArgs depends on implementation

MyObj* obj = STD_NEW(alloc, MyObj);
AnotherObj* obj2 = STD_NEW(alloc, AnotherObj);
... // use obj and obj2 to do something.

}

I think that a GCAllocator is a better smart pointer.Why?

First, if you use Smart Pointer technique, when you need an array you have to implement a new a smart pointer type for array
object. The following code doesn't work well:

{
std::auto_ptr<MyObj> objArray(new MyObj[count]);
// ---> Error!!! You can't pass an array pointer to the auto_ptr constructor.

... // use objArray to do something.
}

But when you use GCAllocator, It is only a piece of cake:

{
GCAllocator alloc(initArgs); // initArgs depends on implementation

MyObj* objArray = STD_NEW_ARRAY(alloc, MyObj, count);
... // use objArray to do something.

}

Second, Most of the Smart Pointer implementations (eg. boost::shared_ptr, ATL::CComPtr, etc) are based on "Reference
Counting" technique.When an algorithm needs to return a new object, "Reference Counting" is a common solution. For example:

boost::shared_ptr<MyObj> algorithm(...)
{

boost::shared_ptr<MyObj> obj(new MyObj);
...
return obj;

}

But "Reference Counting" really isn't a good solution:

1. TheWindows COM (based on "Reference Counting") programmers are sick of memory leak endlessly.
2. It's a fact that not all of the C++ programmers like smart pointers, and not all of the C++ programmers like the SAME smart

pointer. You have to convert between normal pointers and smart pointers, or between one smart pointer and another smart
pointer. Then things become complex and difficult to control.

3. Having a risk of Circular Reference.
4. Tracking down memory leaks is more difficult when an object has a "Reference Count".

When you use GCAllocator, a GCAllocator instance will be passed to the algorithm if it needs to return a new object:

template <class AllocT>
MyObj* algorithm(AllocT& alloc, ...)
{

MyObj* obj = STD_NEW(alloc, MyObj);

http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm
http://msdn2.microsoft.com/en-us/library/ezzw7k98%28vs.80%29.aspx
http://en.wikipedia.org/wiki/Reference_counting
http://en.wikipedia.org/wiki/Reference_counting
http://www.microsoft.com/com/
http://en.wikipedia.org/wiki/Reference_counting
http://en.wikipedia.org/wiki/Circular_reference

...
return obj;

}

Note the allocator instance alloc is passed as a template classAllocT.At the beginning of this article, I said that GCAllocator was
not a implementation, but a concept. Now you know why I say that: most of algorithms don't need to care what the alloc instance
is.

Last, "Smart Pointer" is out, all what you use are just normal pointer. This is very important. It makes the code using "GC
Allocator" work together with the code without using "GCAllocator" well.

CreatingCreatingCreating

Creating

aaa

a

GCGCGC

GC

AllocatorAllocatorAllocator

Allocator

aaa

a

ndndnd

nd

AllocatingAllocatingAllocating

Allocating

MemoryMemoryMemory

Memory

ShouldShouldShould

Should

BeBeBe

Be

VeryVeryVery

Very

FastFastFast

Fast

Most of allocator implementations optimize allocating a lot of objects. If ONE allocator instance only allocates ONE object
instance, they become slower than a normal new/delete allocation.When we consider GCAllocator as Smart Pointer, It should be
fast even if It only allocate ONE object instance.

Let's see one of our test result:

(PerAlloc means the number of objects allocated by one allocator instance)

For the detail information about the comparison, see "Allocators Performance Comparison". I 'm excited that ScopeAlloc is
observably faster than a normal new/delete allocation andAutoFreeAlloc is close to a normal new/delete allocation.

AnotherAnotherAnother

Another

WayWayWay

Way

ofofof

of

GCGCGC

GC

I think that GCAllocator is another way of GC. Of course, GCAllocator does't work as GC in Java or C#. In fact, the core source

PerAlloc ScopeAlloc AutoFreeAlloc AprPools MtAllocator BoostPool BoostObjectPool NewDelete

1 3.93 ms 59.26 ms 68.58 ms 56.48 ms 227.61 ms 347.08 ms 50.66 ms

http://xushiwei.com/allocators-performance-comparison

code of our GCAllocator implementation is only about 100 code lines! It doesn't do too much, but do the most important things.

Generally GCAllocator has an abstract to algorithms like this:

An algorithm may has two GC Allocator instances. One is named "Private GC Allocator". Another is named "Shared GC
Allocator". If an object will be returned out, then it will be allocated by "Shared GC Allocator". If an object will be destroyed
when the algorithm is end, then it will be allocated by "Private GCAllocator". The pseudo code looks like this:

ResultDOM* algorithm(GCAllocator& sharedAlloc, InputArgs args)
{

GCAllocator privateAlloc(sharedAlloc);
...
ResultDOM* result = STD_NEW(sharedAlloc, ResultDOM);
ResultNode* node = STD_NEW(sharedAlloc, ResultNode);
result->addNode(node);
...
TempVariable1* temp1 = STD_NEW(privateAlloc, TempVariable1);
TempVariable2* temp2 = STD_NEW(privateAlloc, TempVariable2);
...
return result;

}

The Private GC Allocator (named privateAlloc) works like a "Smart Pointer". But unlike "Smart Pointer", ONE GC Allocator
instance manages a group of objects, not ONE BY ONE.

If the amount of private allocated objects is small, privateAlloc is not needed. Then the algorithm become like this:

ResultDOM* algorithm(GCAllocator& alloc, InputArgs args)
{

ResultDOM* result = STD_NEW(alloc, ResultDOM);
ResultNode* node = STD_NEW(alloc, ResultNode);
result->addNode(node);
...
TempVariable1* temp1 = STD_NEW(alloc, TempVariable1);
TempVariable2* temp2 = STD_NEW(alloc, TempVariable2);
...
return result;

}

In any case, you don't need to delete objects manually. This is why I call GCAllocator "GCAllocator".

GCGCGC

GC

AllocatorAllocatorAllocator

Allocator

Implementations:Implementations:Implementations:

Implementations:

ScopeAllocScopeAllocScopeAlloc

ScopeAlloc

andandand

and

AutoFreeAllocAutoFreeAllocAutoFreeAlloc

AutoFreeAlloc

We have two "GC Allocator" implementations, named "AutoFreeAlloc" and "ScopeAlloc". A brief summary of this section
follows:

1. Performance: they are faster than all other allocators you ever seen.
2. The infrastructure of ScopeAlloc andAutoFreeAlloc.
3. A huge stack.
4. Only about 100 core code lines.
5. No multithreaded locks (no need).
6. When to useAutoFreeAlloc.
7. Open source.

FasterFasterFaster

Faster

ThanThanThan

Than

AllAllAll

All

AllocatorsAllocatorsAllocators

Allocators

YouYouYou

You

EverEverEver

Ever

SeenSeenSeen

Seen

We toke performance comparison of:

 AutoFreeAlloc
 ScopeAlloc
 APRPools (Apache Portable Runtime)
 MTAllocator (GNU C++)
 Boost Pool (boost::pool)
 Boost ObjectPool (boost::object_pool)
 NewDelete (new/delete)

In linux platform, we got the following result:

http://xushiwei.com/gc-allocator
http://xushiwei.com/gc-allocator
http://apr.apache.org/docs/apr/0.9/group__apr__pools.html
http://apr.apache.org/
http://gcc.gnu.org/onlinedocs/libstdc++/ext/mt_allocator.html
http://gcc.gnu.org/
http://www.boost.org/doc/libs/1_35_0/libs/pool/doc/index.html
http://www.boost.org/
http://www.boost.org/doc/libs/1_35_0/libs/pool/doc/interfaces/object_pool.html
http://www.boost.org/
http://www.cplusplus.com/doc/tutorial/dynamic.html
http://www.cplusplus.com/

In windows platform, we got the following result (I remove the NewDelete bar because it is too slow):

For the detail information about the comparison, see "Allocators Performance Comparison".

Why ScopeAlloc andAutoFreeAlloc are so fast? They benefit from:

1. Its good allocation algorithm.
2. No multithreaded locks.
3. C++ inline functions.

http://xushiwei.com/allocators-performance-comparison

TheTheThe

The

InfrastructureInfrastructureInfrastructure

Infrastructure

ofofof

of

ScopeAllocScopeAllocScopeAlloc

ScopeAlloc

andandand

and

AutoFreeAllocAutoFreeAllocAutoFreeAlloc

AutoFreeAlloc

The infrastructure of ScopeAlloc andAutoFreeAlloc follows:

There are three basic concepts: SystemAlloc, BlockPool and GCAlloc.

SystemAlloc is an abstract of the underlying system memory management service. It is only a wrapper of malloc/free procedures
of C runtime:

class SystemAlloc
{
public:

void* allocate(size_t cb) { return malloc(cb); }
void deallocate(void* p) { free(p); }
void swap(SystemAlloc& o) {}

};

BlockPool is a Memory Pool. It works as a cache pool to accelerate the speed of allocating memory. BlockPool provides the
same interface as SystemAlloc:

class BlockPool
{
public:

BlockPool(int cacheSize = INT_MAX);

void* allocate(size_t cb);
void deallocate(void* p);
void swap(SystemAlloc& o);

};

Why BlockPool can accelerate the speed of allocating memory? It isn't because BlockPool is a memory pool (you know
SystemAlloc may also be implemented by usingMemory Pool technique), but BlockPool doesn't need multithreaded locks.

http://en.wikipedia.org/wiki/Memory_pool

The last concept is GCAlloc. It is the core of GCAllocator.And it is only about 100 core code lines!

GCAlloc:GCAlloc:GCAlloc:

GCAlloc:

AAA

A

HugeHugeHuge

Huge

StackStackStack

Stack

The implementation class of GCAlloc is named "GCAllocT". It provides the following interface:

template <class _Alloc>
class GCAllocT
{
public:

GCAllocT();
explicit GCAllocT(const _Alloc& alloc);
explicit GCAllocT(GCAllocT& owner);

// Allocate memory without given a cleanup function
void* allocate(size_t cb);

// Allocate memory with a cleanup function
void* allocate(size_t cb, DestructorType fn);

// Cleanup and deallocate all allocated memory by this GC Allocator
void clear();

// Swap two GCAllocator instances
void swap(GCAllocT& o);

};

typedef GCAllocT<SystemAlloc> AutoFreeAlloc;
typedef GCAllocT<ProxyBlockPool> ScopeAlloc;

AutoFreeAlloc and ScopeAlloc are both based on GCAllocT. The only different thing is that AutoFreeAlloc is based on
SystemAlloc (global malloc/free allocation procedures), while ScopeAlloc is based on a BlockPool (a cache allocator to
accelerate the speed of memory allocation).

AutoFreeAlloc and ScopeAlloc have distinct performance difference due to this difference.

ScopeAlloc has the best performance in any condition. And if we allocate enough objects, performance of
AutoFreeAlloc is close to ScopeAlloc.

For the detail information, see "Allocators Performance Comparison".

You know, the fastest "Allocator" is "Stack". C/C++ allocate auto objects (also named "Stack Objects") on "Stack". But "Stack"
has many of limit:

1. When exiting a procedure, all "Stack Objects" will be destroyed. So, you can't return a "Stack Object".
2. You can't allocate too many "Stack Objects", because "Stack" has limited size.

The basic idea of GCAlloc is implemented as "a huge stack" on heap. It have similar performance as "Stack". I don't explain the
detail implementation here. If you want to dive into it, refer the source code.

NoNoNo

No

MultithreadMultithreadMultithread

Multithread

ededed

ed

LocksLocksLocks

Locks

Why doesn't GCAllocator need multithreaded locks?

http://xushiwei.com/allocators-performance-comparison
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/memory/AutoFreeAlloc.h

Memory allocation = System memory block management + Memory management algorithm

The underlying system memory block management is provided by OS. It will optimize large memory block allocation (allocating
small objects is supported, but doesn't need to optimize). And It is thread/process safe.

Memory management algorithm is provided by C/C++ runtime library, or other libraries. Memory management algorithmsARE
only algorithms. Most of them are designed to be thread safe.

If we use global new/delete or malloc/free procedures to allocate memory, thread safe is a MUST (because all threads use these
procedures), not OPTIONAL. But if we use allocator instances to manage memory, then thread safe becomes OPTIONAL.

Why? Sharing GC Allocator in multi threads is not recommended. It means that sharing memory between threads is also not
recommended. If you REALLY want to share memory, use new/delete or anything else.

ForForFor

For

usersusersusers

users

ofofof

of

GCGCGC

GC

Allocator,Allocator,Allocator,

Allocator,

wewewe

we

suggestsuggestsuggest

suggest

thatthatthat

that

onlyonlyonly

only

useuseuse

use

ONEONEONE

ONE

BlockPoolBlockPoolBlockPool

BlockPool

instanceinstanceinstance

instance

ininin

in

ONEONEONE

ONE

thread,thread,thread,

thread,

andandand

and

ONEONEONE

ONE

threadthreadthread

thread

maymaymay

may

useuseuse

use

multiplemultiplemultiple

multiple

PRIVATEPRIVATEPRIVATE

PRIVATE

"ScopeAlloc""ScopeAlloc""ScopeAlloc"

"ScopeAlloc"

instancesinstancesinstances

instances

(depend(depend(depend

(depend

ononon

on

youryouryour

your

requirement)requirement)requirement)

requirement)

tototo

to

allocateallocateallocate

allocate

memory.memory.memory.

memory.

And this makes ScopeAlloc be the fastest allocator!

WhenWhenWhen

When

tototo

to

useuseuse

use

AutoFreeAllocAutoFreeAllocAutoFreeAlloc

AutoFreeAlloc

You know, ScopeAlloc is faster than AutoFreeAlloc in any condition. Then you may wonder when to use AutoFreeAlloc. Here
are some conditions that you can consider to useAutoFreeAlloc:

1. An algorithm that don't want to accept a BlockPool or ScopeAlloc parameter. If we use ScopeAlloc, we need a BlockPool or
ScopeAlloc instance to construct a new ScopeAlloc object. But in some case, we don't want our users to know the
implementation detail of using ScopeAlloc.

2. An algorithm that need a lot of memory allocations. If we allocate enough objects, performance of AutoFreeAlloc is close
to ScopeAlloc (see "Allocators Performance Comparison").

3. An algorithm that will release all allocated memory when the algorithm is end.

OpenOpenOpen

Open

SourceSourceSource

Source

Yes, ScopeAlloc/AutoFreeAlloc is open source. And it's licensed under Common Public License(CPL). you can find more
information in http://code.google.com/p/stdext/.

Here are quick links for source code of ScopeAlloc/AutoFreeAlloc:

 AutoFreeAlloc.h - class GCAllocT,AutoFreeAlloc
 ScopeAlloc.h - class BlockPool, ScopeAlloc
 SystemAlloc.h - class SystemAlloc

ApplicationsApplicationsApplications

Applications

basedbasedbased

based

ononon

on

GCGCGC

GC

AllocatorAllocatorAllocator

Allocator

Is GCAllocator useful? Yes. Things are changed for C++ developers! We also can benefit from GC like Java and C#! And There
are already some applications based on it. Here are part of them:

AAA

A

WordWordWord

Word

FileFileFile

File

WriterWriterWriter

Writer

I wrote a word file format writer with GCAllocator. I was excited that It is the fastest word file writer component I ever seen.

Interested in it? See The Fastest Word File Writer.

http://xushiwei.com/allocators-performance-comparison
http://xushiwei.com/allocators-performance-comparison
http://www.opensource.org/licenses/cpl1.0.php
http://code.google.com/p/stdext/
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/memory/AutoFreeAlloc.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/memory/ScopeAlloc.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/memory/SystemAlloc.h
http://xushiwei.com/the-fastest-word-file-writer

RopeRopeRope

Rope

basedbasedbased

based

ononon

on

GCGCGC

GC

AllocatorAllocatorAllocator

Allocator

Rope is a complex string implementation with scaled performance. The original rope implementation is appeared in SGI STL. I
rewrite the rope class based on GCAllocator. Code size is much reduced and performance is better.

Interested in it? See Rope on GC Allocator.

STLSTLSTL

STL

ContainersContainersContainers

Containers

basedbasedbased

based

ononon

on

GCGCGC

GC

AllocatorAllocatorAllocator

Allocator

Not only rope, but most of all STL containers can be based on GCAllocator, including:

 Deque
 List, Slist
 Map, MultiMap
 Set, MultiSet
 HashMap, HashMultiMap
 HashSet, HashMultiSet

When we use ScopeAlloc, performance of STL containers has distinct promotion. Here is one of our test result:

For the detail information about the comparison, see "Allocators Performance on STL Collections".

Note that we don't provide all STL containers based on GC Allocator. STL containers of linear data structure (eg. std::vector,
std::basic_string/std::string, etc) don't need a GC allocator.

RelatedRelatedRelated

Related

TopicsTopicsTopics

Topics

 Allocators Performance Comparison
 Allocators Performance on STL Collections
 Rope based on GCAllocator
 The Fastest Word File Writer

deque list set hash_set map hash_map

ScopeAlloc 5.71 ms 20.32 ms 198.44 ms 129.68 ms 225.12 ms 130.80 ms

STL 8.34 ms 66.56 ms 504.81 ms 232.63 ms 505.34 ms 242.21 ms

http://www.sgi.com/tech/stl/
http://xushiwei.com/rope-on-gc-allocator
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Deque.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/List.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Slist.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Map.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Map.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Set.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Set.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/HashMap.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/HashMap.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/HashSet.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/HashSet.h
http://xushiwei.com/allocators-performance-on-stl-collections
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/basic_string.html
http://xushiwei.com/allocators-performance-comparison
http://xushiwei.com/allocators-performance-on-stl-collections
http://xushiwei.com/rope-on-gc-allocator
http://xushiwei.com/the-fastest-word-file-writer

	Introduction
	WhatisGCAllocator?
	ConceptofGCAllocator
	ABetterSmartPointer
	CreatingaGCAllocatorandAllocatingMemoryShou
	AnotherWayofGC

	GCAllocatorImplementations:ScopeAllocandAutoF
	FasterThanAllAllocatorsYouEverSeen
	TheInfrastructureofScopeAllocandAutoFreeAlloc
	GCAlloc:AHugeStack
	NoMultithreadedLocks
	WhentouseAutoFreeAlloc
	OpenSource

	ApplicationsbasedonGCAllocator
	AWordFileWriter
	RopebasedonGCAllocator
	STLContainersbasedonGCAllocator

	RelatedTopics

