C++ Memory Management Innovation: GC Allocator

xushiweizh@gmail.com

2008-4-21
IIEEOAUCTION. ...ttt sttt h bbbttt es b eb e eb e eb e e bt eb e eh e se e e b e seemeemteseebeshe e ket et emtes b ebe bt sbe b et et ententenean 2
WAL 1S GO AIIOCALOT?. ... vttt ettt ettt ettt sttt bttt b et b e bbbt eb e s et bbb eateb et s b sttt et et e b ettt eb et ebesene 2
CONCEPL OF GO AILOCALOT.oovieeieiieeteteete et eet e te et et e eteeetebeeetesteeseebeeseessasbeessebasssassesseessasseessansesssessesssessasseessessesssensanseessenns 2
A BEEr SIMATT POINTET.....c.eeuiiiiiiiitiitiite ittt ettt es et eb e eb et s bt s b st et et ebeebe e bt s besbesben b e st ebt et e bt b et e benteneeneas 3
Creating a GC Allocator and Allocating Memory Should Be Very Fast..........cocooiieieiiiiieiieeeeeee e 5
ANOLHET WAY OF Gttt ettt e s te st et et et e st e st e ee e se st et e s bensessesesees et ensensensensenteseeseesessessesseneeneens 5
GC Allocator Implementations: SCOpPEAIoC and AULOFTEEATLOC.ccvirieiieieiesieetet ettt sttt ae e eneas 7
Faster Than All AIlOcators YOU EVEI SEEI......c.ceiiiiiiiiiiiietit ittt ettt st st st ettt st s bbbt aeeaea 7
The Infrastructure of SCOPeAIloc and AULOFTEEATIOC.......ccviiviiiiiieiee ettt et eb e ettt be st ere e b ees 9
GCAILOC: A HUEZE SEACK. ...ttt ettt sttt s h e st b e s e be s st et e eb e e st e bt en e bt e st et e ebeen b e bt ente bt eneesaeeneenes 10
NO MUIIIICAAEA LLOCKS.ueeutiiiiteieteietee ettt sttt ettt et be bbbt e s e b bbbttt es e e st eb e et e ebeebesbesaenee e eneene 10
WHen t0 USE AULOFTEEALLOC.c.iiiiiieiiiciirice ettt ettt ettt ettt b e skttt se bbb 11
OPEI SOUICE.......vieevieiieeiiieieesttesteeteettettestteasseaseessaessseassaasseessseasseasseassseasseassaasseenssssseasssesssenssessssnsseensesssessseessenssessssesnsenssennes 11
ApPPlications based 0N GC ATIOCALOTL..........ccuiriirieieeterte ettt se et et e ettt et eat e te st eteeteesaenseessessesseesesseessansesssensesseensessesssansenseenes 11
AL WOTA FILE WITERT ...ttt ettt et sttt et et e be e bt s bt s b e b b e st e s e b e bbbttt e st es b ebteb e ebeebesb e st e saenaeneeneeneenes 11
ROPE DASEA 0N GC AILOCALOT........cvietieetiiieiiecieeetecte ettt et etesteetesteeteessesteesbasteeseesseeseassaseessesssessasseessassesssessesseessesseessassensaessans 12
STL Containers based 0N GC ALLOCALOT...........c.iiiiuiririiieterieesiet ettt ettt ettt sttt ettt ettt et et e st ese e b en e ebe e ebenesseneeteneeaeessens 12

REIALEA TOPICS. vt evteititieiestt ettt ettt e te et et e s bt et et et e e e st ese et eessenseessenseessenseeseessansaessenseentenseeseensanseensenseessenseeseansenssensenseansenseeseenes 12

Introduction

Most of the C++ programmers do not benefit from "Garbage Collection" technique (GC). They are sick of deleting objects but

have to do this. There are some C/C++ memory GC implementations, but they are complex and are not widely used.

I am going to introduce a new memory management technique named "GC Allocator". "GC Allocator" isn't an implementation,
but a concept. Now, we have two "GC Allocator” implementations, named "AutoFreeAlloc" and "ScopeAlloc".

This article consists of three parts:

1. Whatis GC Allocator?
2. GC Allocator implementations: ScopeAlloc and AutoFreeAlloc
3. Applications based on GC Allocator

What is GC Allocator?

1. Itisan Allocator for allocating memory.

2. A better Smart Pointer.

3. Creating a GC Allocator and allocating memory should be very fast.
4. Another way of GC.

Concept of GC Allocator

GC Allocator is only a concept. The following is minimum specification for GC Allocator:

typedef void (*DestructorType)(void* data);

concept GCAllocator

{

// Allocate memory without given a cleanup function
void* allocate(size t cb);

/I Allocate memory with a cleanup function
void* allocate(size t cb, DestructorType fn);

// Cleanup and deallocate all allocated memory by this GC Allocator
void clear();

/I Swap two GCAllocator instances
void swap(GCAllocator& o);

}5

When you creating a GC Allocator, You can use S70 NEW, STD NEW ARRAYto new objects. Let's see a very simple example:
GCAllocator alloc(initArgs); // initArgs depends on implementation
int* intObj = STD_NEW(alloc, int);

int* intObjWithArg = STD NEW(alloc, int)(10);
int* intArray = STD NEW_ARRAY ((alloc, int, count);

MyObj* obj = STD_NEW(alloc, MyObj);
MyObj* objWithArg = STD NEW/(alloc, MyObj)(100);

http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://xushiwei.com/gc-allocator
http://xushiwei.com/gc-allocator
http://xushiwei.com/gc-allocator
http://www.ddj.com/cpp/184403759
http://en.wikipedia.org/wiki/Smart_pointer
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29

MyODbj* objArray = STD NEW_ARRAY (alloc, MyObj, count);

Frankly speaking, I don't like S7D NEW and S7D NEW ARRAY.1hope I can use the following syntax:

GCAllocator alloc(initArgs);

int* intObj = new(alloc) int;
int* intObjWithArg = new(alloc) int(10);
int* intArray = new(alloc) int[count];

MyObj* obj = new(alloc) MyObyj;

MyObj* objWithArg = new(alloc) MyObj(100);

MyObj* objArray = new(alloc) MyObj[count];

A Better Smart Pointer

C++ programmers are sick of deleting objects. So they invent a technique named "Smart Pointer"
implementations of Smart Pointer. The simplest one is std::auto_ptr. Here is an example:

{

}

If you don't use Smart Pointer, you have to write the following code:

{

std::auto_ptr<MyObj> obj(new MyObyj);

std::auto_ptr<AnotherObj> obj2(new AnotherObj);

... // use obj and obj2 to do something.

MyObj* obj = new MyObyj;
AnotherObj* obj2;
try
{
obj2 = new AnotherObj;

}
catch(...}

{
delete obj;

throw;

try

... // use obj and obj2 to do something.

}
catch(...)

{
delete obj2;

delete obj;
throw;

}
delete obj2;

delete obj;

. There are many

http://en.wikipedia.org/wiki/Smart_pointer

When you use a GC Allocator, you can do the same things as the following:

{
GCAllocator alloc(initArgs); // initArgs depends on implementation
MyObj* obj = STD NEW(alloc, MyObj);
AnotherObj* obj2 = STD _NEW(alloc, AnotherObj);
... // use obj and obj2 to do something.
H

I think that a GC Allocator is a better smart pointer. Why?

First, if you use Smart Pointer technique, when you need an array you have to implement a new a smart pointer type for array
object. The following code doesn't work well:

{
std::auto_ptr<MyObj> objArray(new MyObj[count]);
/I --=> Error!!! You can't pass an array pointer to the auto_ptr constructor.
... // use objArray to do something.

H

But when you use GC Allocator, It is only a piece of cake:

{
GCAllocator alloc(initArgs); // initArgs depends on implementation
MyObj* objArray = STD NEW_ARRAY (alloc, MyObj, count);
... // use objArray to do something.

H

Second, Most of the Smart Pointer implementations (eg. boost::shared ptr, ATL::CComPtr, etc) are based on "Reference

Counting" technique. When an algorithm needs to return a new object, "Reference Counting" is a common solution. For example:

boost::shared ptr<MyObj> algorithm(...)

{
boost::shared ptr<MyObj> obj(new MyObj);

return obyj;

}

But "Reference Counting" really isn't a good solution:

The Windows COM (based on "Reference Counting") programmers are sick of memory leak endlessly.

2. It's a fact that not all of the C++ programmers like smart pointers, and not all of the C++ programmers like the SAME smart
pointer. You have to convert between normal pointers and smart pointers, or between one smart pointer and another smart
pointer. Then things become complex and difficult to control.

3. Havinga risk of Circular Reference.

4. Tracking down memory leaks is more difficult when an object has a "Reference Count".
When you use GC Allocator, a GC Allocator instance will be passed to the algorithm if it needs to return a new object:

template <class AllocT>
MyObj* algorithm(AllocT& alloc, ...)

{
MyObj* obj = STD NEW(alloc, MyObj);

http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm
http://msdn2.microsoft.com/en-us/library/ezzw7k98%28vs.80%29.aspx
http://en.wikipedia.org/wiki/Reference_counting
http://en.wikipedia.org/wiki/Reference_counting
http://www.microsoft.com/com/
http://en.wikipedia.org/wiki/Reference_counting
http://en.wikipedia.org/wiki/Circular_reference

return obj;

}

Note the allocator instance @/oc is passed as a template class AllocT. At the beginning of this article, I said that GC Allocator was
not a implementation, but a concept. Now you know why I say that: most of algorithms don't need to care what the @//oc instance
is.

Last, "Smart Pointer” is out, all what you use are just normal pointer. This is very important. It makes the code using "GC

Allocator" work together with the code without using "GC Allocator" well.

Creating a GC Allocator and Allocating Memory Should Be Very Fast

Most of allocator implementations optimize allocating a lot of objects. If ONE allocator instance only allocates ONE object
instance, they become slower than a normal new/delete allocation. When we consider GC Allocator as Smart Pointer, It should be
fast even if It only allocate ONE object instance.

Let's see one of our test result:

PerAlloc|ScopeAlloc|AutoFreeAlloc|AprPools|MtAllocator|BoostPool [BoostObjectPool [NewDelete

1 3.93 ms 59.26 ms 68.58 ms|[56.48 ms [227.61 ms|347.08 ms 50.66 ms
PerAlloc=1
400, 00 ms
Sh0. 00 ms
2 300.00 ms
= 250. 00 ms
ig 200, 00 me
; 150, 00 ms
& 100.00 ms
S0, 00 ms
O. OD lTlS 1 1 1 1 1 1
& & NG £ S oY 2
'\,G "ye' s xS oo a -2
O I A S Sl
@ 2 4 Q & < N
% © W Y o o &
(:FP aﬂr < S o A
K & K
W o
kY

(PerAlloc means the number of objects allocated by one allocator instance)

For the detail information about the comparison, see "Allocators Performance Comparison". I 'm excited that ScopeAlloc is

observably faster than a normal new/delete allocation and AutoFreeAlloc is close to a normal new/delete allocation.

Another Way of GC

I think that GC Allocator is another way of GC. Of course, GC Allocator does't work as GC in Java or C#. In fact, the core source

http://xushiwei.com/allocators-performance-comparison

code of our GC Allocator implementation is only about 100 code lines! It doesn't do too much, but do the most important things.

Generally GC Allocator has an abstract to algorithms like this:

Staxt
R s e Wlemory Allocation
: Algorithm v T
! Step 1 R
1
: GC Allocator
| (Private)
1
1 atep i
1
1
1

 SRRRCEEEEELE SESTRTRERES

Ilemory Deallocation

Iemory Allocation

GC Allocator
[Bhared)

Algorithm Result

An algorithm may has two GC Allocator instances. One is named "Private GC Allocator". Another is named "Shared GC
Allocator". If an object will be returned out, then it will be allocated by "Shared GC Allocator". If an object will be destroyed
when the algorithm is end, then it will be allocated by "Private GC Allocator". The pseudo code looks like this:

ResultDOM* algorithm(GCAllocator& sharedAlloc, InputArgs args)

{
GCAllocator privateAlloc(sharedAlloc);
ResultDOM* result = STD_NEW(sharedAlloc, ResultDOM);
ResultNode* node = STD NEW(sharedAlloc, ResultNode);
result->addNode(node);
TempVariablel1* templ = STD _NEW(privateAlloc, TempVariablel);
TempVariable2* temp2 = STD NEW (privateAlloc, TempVariable2);
return result;

}

The Private GC Allocator (named privateA/loc) works like a "Smart Pointer". But unlike "Smart Pointer", ONE GC Allocator
instance manages a group of objects, not ONE BY ONE.

If the amount of private allocated objects is small, prrvared//oc is not needed. Then the algorithm become like this:

ResultDOM* algorithm(GCAllocator& alloc, InputArgs args)

{
ResultDOM* result = STD_NEW(alloc, ResultDOM));

ResultNode* node = STD_NEW(alloc, ResultNode);
result->addNode(node);

TempVariable1* templ = STD_NEW(alloc, TempVariablel);
TempVariable2* temp2 = STD _NEW(alloc, TempVariable2);

return result;

}

In any case, you don't need to delete objects manually. This is why I call GCAllocator "GC Allocator".

GC Allocator Implementations: ScopeAlloc and AutoFreeAlloc

We have two "GC Allocator" implementations, named "AutoFreeAlloc" and "ScopeAlloc". A brief summary of this section

follows:

1. Performance: they are faster than all other allocators you ever seen.
2. The infrastructure of ScopeAlloc and AutoFreeAlloc.

3. A huge stack.

4. Only about 100 core code lines.

5. No multithreaded locks (no need).

6. When to use AutoFreeAlloc.

7. Open source.

Faster Than All Allocators You Ever Seen

We toke performance comparison of:

AutoFreeAlloc

ScopeAlloc

APR Pools (Apache Portable Runtime)
MT Allocator (GNU C++)

Boost Pool (boost::pool)

Boost ObjectPool (boost::object pool)
< NewDelete (new/delete)

IR I

In linux platform, we got the following result:

http://xushiwei.com/gc-allocator
http://xushiwei.com/gc-allocator
http://apr.apache.org/docs/apr/0.9/group__apr__pools.html
http://apr.apache.org/
http://gcc.gnu.org/onlinedocs/libstdc++/ext/mt_allocator.html
http://gcc.gnu.org/
http://www.boost.org/doc/libs/1_35_0/libs/pool/doc/index.html
http://www.boost.org/
http://www.boost.org/doc/libs/1_35_0/libs/pool/doc/interfaces/object_pool.html
http://www.boost.org/
http://www.cplusplus.com/doc/tutorial/dynamic.html
http://www.cplusplus.com/

Per Alloc=1000000

120,00 ms p

- 100, 00 m=
20, 00 ms
60, 00 ms
40. 00 ms
20, 00 ms

Duration (ms)

CI. |:||:| lTlS | | I_l | | |_| | l_l 1

In windows platform, we got the following result (I remove the NewDelete bar because it is too slow):

PerAlloc=1000000

00 ms
00 ms
00 ms
00 ms
00 ms
00 ms
00 ms
00 1. 1, . .

m=

Duration (ms)

i i
= b o o Co oo [

° ag““ N
2
o

For the detail information about the comparison, see "Allocators Performance Comparison".

Why ScopeAlloc and AutoFreeAlloc are so fast? They benefit from:

1. Its good allocation algorithm.
2. No multithreaded locks.
3. C++ inline functions.

http://xushiwei.com/allocators-performance-comparison

The Infrastructure of ScopeAlloc and AutoFreeAlloc

The infrastructure of ScopeAlloc and AutoFreeAlloc follows:

Thread N

GCAlloc s GC Alloc GCAlloc s GCAlloc

BlockPool (No lock) BlockPool (No lock)

- - s s s Es Es o s Es = s o e s s oEs Es Es B B = ms

SysternAlloc
{(Thread Process Safe)

EMemnrjr Allocation / Deallacation I

There are three basic concepts: SystemAlloc, BlockPool and GCAlloc.

SystemAlloc is an abstract of the underlying system memory management service. It is only a wrapper of malloc/free procedures

of C runtime:

class SystemAlloc

{

public:
void* allocate(size t cb) { return malloc(cb); }
void deallocate(void* p) { free(p); }
void swap(SystemAlloc& o) {}

15

BlockPool is a Memory Pool. It works as a cache pool to accelerate the speed of allocating memory. BlockPool provides the
same interface as SystemAlloc:

class BlockPool
{
public:
BlockPool(int cacheSize = INT MAX);

void* allocate(size t cb);
void deallocate(void* p);
void swap(SystemAlloc& o);

15
Why BlockPool can accelerate the speed of allocating memory? It isn't because BlockPool is a memory pool (you know
SystemAlloc may also be implemented by using Memory Pool technique), but BlockPool doesn't need multithreaded locks.

http://en.wikipedia.org/wiki/Memory_pool

The last concept is GCAlloc. It is the core of GC Allocator. And it is only about 100 core code lines!

GCAlloc: A Huge Stack

The implementation class of GCAlloc is named "GCAllocT". It provides the following interface:

template <class _Alloc>

class GCAllocT

{

public:
GCAllocT();
explicit GCAllocT(const _Alloc& alloc);
explicit GCAllocT(GCAllocT& owner);

/I Allocate memory without given a cleanup function

void* allocate(size t cb);

// Allocate memory with a cleanup function
void* allocate(size t cb, DestructorType fn);

// Cleanup and deallocate all allocated memory by this GC Allocator

void clear();

/I Swap two GCAllocator instances
void swap(GCAllocT& o);

¥
typedef GCAllocT<SystemAlloc> AutoFreeAlloc;
typedef GCAllocT<ProxyBlockPool> ScopeAlloc;

AutoFreeAlloc and ScopeAlloc are both based on GCAllocT. The only different thing is that AutoFreeAlloc is based on
SystemAlloc (global malloc/free allocation procedures), while ScopeAlloc is based on a BlockPool (a cache allocator to

accelerate the speed of memory allocation).
AutoFreeAlloc and ScopeAlloc have distinct performance difference due to this difference.

ScopeAlloc has the best performance in any condition. And if we allocate enough objects, performance of

AutoFreeAlloc is close to ScopeAlloc.

For the detail information, see "Allocators Performance Comparison".

You know, the fastest "Allocator" is "Stack". C/C++ allocate auto objects (also named "Stack Objects") on "Stack". But "Stack"

has many of limit:

1. When exiting a procedure, all "Stack Objects" will be destroyed. So, you can't return a "Stack Object".
2. Youcan't allocate too many "Stack Objects", because "Stack" has limited size.

The basic idea of GCAlloc is implemented as "a huge stack" on heap. It have similar performance as "Stack". I don't explain the

detail implementation here. If you want to dive into it, refer the source code.

No Multithreaded Locks

Why doesn't GC Allocator need multithreaded locks?

http://xushiwei.com/allocators-performance-comparison
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/memory/AutoFreeAlloc.h

Memory allocation = System memory block management + Memory management algorithm

The underlying system memory block management is provided by OS. It will optimize large memory block allocation (allocating
small objects is supported, but doesn't need to optimize). And It is thread/process safe.

Memory management algorithm is provided by C/C++ runtime library, or other libraries. Memory management algorithms ARE
only algorithms. Most of them are designed to be thread safe.

If we use global new/delete or malloc/free procedures to allocate memory, thread safe is a MUST (because all threads use these
procedures), not OPTIONAL. But if we use allocator instances to manage memory, then thread safe becomes OPTIONAL.

Why? Sharing GC Allocator in multi threads is not recommended. It means that sharing memory between threads is also not
recommended. If you REALLY want to share memory, use new/delete or anything else.

For users of GC Allocator, we suggest that only use ONE BlockPool instance in ONE thread, and ONE thread
may use multiple PRIVATE "ScopeAlloc" instances (depend on your requirement) to allocate memory.

And this makes ScopeAlloc be the fastest allocator!

When to use AutoFreeAlloc

You know, ScopeAlloc is faster than AutoFreeAlloc in any condition. Then you may wonder when to use AutoFreeAlloc. Here
are some conditions that you can consider to use AutoFreeAlloc:

1. An algorithm that don't want to accept a BlockPool or ScopeAlloc parameter. If we use ScopeAlloc, we need a BlockPool or
ScopeAlloc instance to construct a new ScopeAlloc object. But in some case, we don't want our users to know the
implementation detail of using ScopeAlloc.

2. An algorithm that need a lot of memory allocations. If we allocate enough objects, performance of AutoFreeAlloc is close
to ScopeAlloc (see "Allocators Performance Comparison").

3. An algorithm that will release all allocated memory when the algorithm is end.

Open Source

Yes, ScopeAlloc/AutoFreeAlloc is open source. And it's licensed under Common Public License(CPL). you can find more

information in http://code.google.com/p/stdext/.

Here are quick links for source code of ScopeAlloc/AutoFreeAlloc:

< AutoFreeAlloc.h - class GCAllocT, AutoFreeAlloc
< ScopeAlloc.h - class BlockPool, ScopeAlloc
< SystemAlloc.h - class SystemAlloc

Applications based on GC Allocator

Is GC Allocator useful? Yes. Things are changed for C++ developers! We also can benefit from GC like Java and C#! And There
are already some applications based on it. Here are part of them:

A Word File Writer

I wrote a word file format writer with GC Allocator. I was excited that It is the fastest word file writer component I ever seen.

Interested in it? See The Fastest Word File Writer.

http://xushiwei.com/allocators-performance-comparison
http://xushiwei.com/allocators-performance-comparison
http://www.opensource.org/licenses/cpl1.0.php
http://code.google.com/p/stdext/
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/memory/AutoFreeAlloc.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/memory/ScopeAlloc.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/memory/SystemAlloc.h
http://xushiwei.com/the-fastest-word-file-writer

Rope based on GC Allocator

Rope is a complex string implementation with scaled performance. The original rope implementation is appeared in SGI STL. I
rewrite the rope class based on GC Allocator. Code size is much reduced and performance is better.

Interested in it? See Rope on GC Allocator.

STL Containers based on GC Allocator

Not only rope, but most of all STL containers can be based on GC Allocator, including:

Deque

List, Slist

Map, MultiMap

Set, MultiSet

HashMap, HashMultiMap
HashSet, HashMultiSet

e

When we use ScopeAlloc, performance of STL containers has distinct promotion. Here is one of our test result:

deque list set hash_set map hash_map

ScopeAlloc|5.71 ms [20.32 ms [198.44 ms [129.68 ms |225.12 ms |130.80 ms

STL 8.34ms |66.56 ms |504.81 ms |232.63 ms [505.34 ms [242.21 ms
B00, 00 ms
HO0, 00 ms
400, 00 ms
O Scopeislloc
300, 00 ms
M sSTL
200,00 ms
100, 00 ms
|:|_ |:|[:| ms 1 V_. 1 1 1 1
-, “, -,
¢-$?’ W &% & ‘S‘aﬁ- @q
v Y ";Q./ ";Q./
~F ~F

For the detail information about the comparison, see "Allocators Performance on STL Collections".

Note that we don't provide all STL containers based on GC Allocator. STL containers of linear data structure (eg. std::vector,
std::basic_string/std::string, etc) don't need a GC allocator.

Related Topics

Allocators Performance Comparison

Allocators Performance on STL Collections
Rope based on GC Allocator
The Fastest Word File Writer

S

http://www.sgi.com/tech/stl/
http://xushiwei.com/rope-on-gc-allocator
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Deque.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/List.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Slist.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Map.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Map.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Set.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/Set.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/HashMap.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/HashMap.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/HashSet.h
http://winx.googlecode.com/svn/trunk/stdext/include/stdext/HashSet.h
http://xushiwei.com/allocators-performance-on-stl-collections
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/basic_string.html
http://xushiwei.com/allocators-performance-comparison
http://xushiwei.com/allocators-performance-on-stl-collections
http://xushiwei.com/rope-on-gc-allocator
http://xushiwei.com/the-fastest-word-file-writer

	Introduction
	WhatisGCAllocator?
	ConceptofGCAllocator
	ABetterSmartPointer
	CreatingaGCAllocatorandAllocatingMemoryShou
	AnotherWayofGC

	GCAllocatorImplementations:ScopeAllocandAutoF
	FasterThanAllAllocatorsYouEverSeen
	TheInfrastructureofScopeAllocandAutoFreeAlloc
	GCAlloc:AHugeStack
	NoMultithreadedLocks
	WhentouseAutoFreeAlloc
	OpenSource

	ApplicationsbasedonGCAllocator
	AWordFileWriter
	RopebasedonGCAllocator
	STLContainersbasedonGCAllocator

	RelatedTopics

